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Abstract. Using complexes of Soergel bimodules, we extend Rouquier’s
categorification of the braid groups to the virtual braid groups.
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Introduction

Virtual links have been introduced by Kauffman in [5] as a geometric
counterpart of Gauss codes. A virtual knot diagram is a generic oriented
immersion of circles into the plane, with the usual positive and negative
crossings plus a new kind of crossings called virtual. Such crossings appear
for instance when one projects a generic link in a thickened surface onto a
plane (see [2] or [7]). Many invariants for classical links can be extended to
virtual links. Classical oriented links can be represented by closed braids;
likewise virtual links can be represented by the closures of virtual braids.
There is also an analogue of Markov theorem [3]. Now virtual braids with
n strands form a group, denoted VBn, which can be described by gener-
ators and relations, generalizing the generators and relations of the usual
braid group with n strands Bn. The aim of this note is, using this presen-
tation, to categorify VBn in the weak sense of Rouquier. Rouquier actually
proves in [10] a stronger version of the result that we want to extend and in
particular he states the faithfulness of his categorification. More precisely,
to any word ω in the generators of VBn we associate a bounded cochain
complex F (ω) of bimodules such that if two words ω and ω′ represent the
same element of VBn, then the corresponding cochain complexes F (ω) and
F (ω′) are homotopy equivalent. So we obtain a morphism from the group
VBn to the group of isomorphim classes of invertible complexes up to ho-
motopy. This morphism, contrary to the case of Bn studied by Rouquier, is
not injective. We describe a part of its kernel in Remarks 3.5.

Note that, using Mazorchuk and Stroppel’s study of Arkhipov’s twist-
ing functor in [9], one can give a representation theoretic approach to the
categorification of virtual braids.

1. Virtual braids

Following [13] and [8], we recall the definition of the virtual braid group
VBn with n strands.

Definition 1.1. The virtual braid group VBn is the group generated by

2(n− 1) generators σ1, . . . , σn−1 and ζ1, . . . , ζn−1 satisfying the braid group

relations

σiσj = σjσi, if |i− j| > 1, (1)

σiσi+1σi = σi+1σiσi+1, if 1 ≤ i ≤ n− 2, (2)
1
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the permutation group relations

ζiζj = ζjζi, if |i− j| > 1, (3)

ζiζi+1ζi = ζi+1ζiζi+1, if 1 ≤ i ≤ n− 2, (4)

ζ2
i = 1, if 1 ≤ i ≤ n− 1, (5)

and the mixed relations

σiζj = ζjσi, if |i− j| > 1, (6)

σiζi+1ζi = ζi+1ζiσi+1, if 1 ≤ i ≤ n− 2. (7)

The classical braid group Bn (see [4] for a definition) naturally embeds in
VBn as a subgroup generated by σ1, . . . , σn−1.

The braid group VBn can be depicted diagrammatically. To each gener-
ator σi (resp. σ−1

i ) we associate the elementary braid diagram consisting of
a single positive (resp. negative) crossing between the ith and i+1st strand
as shown in Figure 1 (resp. Figure 2). To each generator ζi we associate the
elementary virtual braid diagram with a single virtual crossing between the
ith and i+ 1st strand of Figure 3.

1 i−1 i i+1 i+2 n

Figure 1. The positive braid σi

1 i−1 i i+1 i+2 n

Figure 2. The negative braid σ−1
i

1 i−1 i i+1 i+2 n

Figure 3. The virtual braid ζi
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The multiplication law of the group VBn consists in concatenating these
elementary braids. We use the convention that braids multiply from bottom
to top: if D (resp. D′) is a virtual braid diagram representing an element
β (resp. β′) of VBn, then the product ββ′ is represented by the diagram
obtained by putting D′ on top of D and gluing the lower endpoints of D′ to
the upper endpoints of D.

The braid group relations, the permutation group relations and the mixed
relations have a diagrammatical interpretation. They correspond to planar
isotopies and the generalized Reidemeister moves depicted in Figures 4, 5
and 6.

Figure 4. Classical Reidemeister II–III moves

Figure 5. Virtual Reidemeister moves

Figure 6. The mixed Reidemeister move

2. Rouquier’s categorification of the braid groups

In this section we recall how Rouquier [10] categorified the braid group Bn.

2.1. Soergel bimodules. We first discuss some bimodules introduced by
Soergel [11], [12] in his work on representation theory.

Let R be the subalgebra of Q[x1, . . . , xn] defined by

R = Q[x1 − x2, x2 − x3, . . . , xn−1 − xn] = Q[x1 − x2, x1 − x3, . . . , x1 − xn].

The symmetric group Sn acts on Q[x1, . . . , xn] by ω(xi) = xω(i) for all
xi ∈ R and ω ∈ Sn. This action preserves R. Let Rω be the subalgebra
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of elements of R fixed by ω. In particular Rτi is the subalgebra of R of
elements fixed by the transposition τi = (i, i+ 1). As an algebra,

Rτi = Q[x1 − x2, . . . , (x1 − xi) + (x1 − xi+1),

(x1 − xi)(x1 − xi+1), x1 − xi+2, . . . , x1 − xn].

Let us also consider the R–bimodules Bω = R ⊗Rω R for any ω ∈ Sn.
The R–bimodules Bτi will be denoted by Bi for simplicity of notation. We
introduce a grading on R, Rτi and Bi by setting deg(xk) = 2 for all k =
1, . . . , n.

Two R-bimodule morphisms between these objects will be relevant to us,
namely bri : Bi → R and rbi : R{2} → Bi defined by

bri(1 ⊗ 1) = 1 and rbi(1) = (xi − xi+1) ⊗ 1 + 1 ⊗ (xi − xi+1).

The curly brackets indicate a shift of the grading: ifM =
⊕

i∈Z

Mi is a Z-graded

bimodule and p an integer, then the Z–graded bimodule M{p} is defined by
M{p}i = Mi−p for all i ∈ Z. The maps bri and rbi are degree-preserving
morphisms of graded R-bimodules.

2.2. Categorification of the braid groups. Following [6] and [10], to
each braid generator σi ∈ Bn we assign the cochain complex F (σi) of graded
R–bimodules

F (σi) : 0 −→ R{2}
rbi−−→ Bi −→ 0, (8)

where Bi sits in cohomological degree 0. To σ−1
i we assign the cochain

complex F (σ−1
i ) of graded R–bimodules

F (σ−1
i ) : 0 −→ Bi{−2}

bri−−→ R{−2} −→ 0, (9)

where Bi{−2} sits in cohomological degree 0. To the unit element 1 ∈ Bn
we assign the complex of graded R-bimodules

F (1) : 0 −→ R −→ 0, (10)

where R sits in cohomological degree 0; the complex F (1) is a unit for
the tensor product of complexes so tensoring any complex of graded R-
bimodules with F (1) leaves the complex unchanged. Finally to any word
σ = σε1i1 . . . σ

εk

ik
where ε1, . . . , εk = ±1, we assign the complex of graded

R-bimodules F (σ) = F (σε1i1 ) ⊗R . . .⊗R F (σεk

ik
).

Rouquier proved the following result, which can be called a categorifica-
tion of the braid group Bn.

Theorem 2.1. [10] If ω and ω′ are words representing the same element of

Bn, then F (ω) and F (ω′) are homotopy equivalent complexes of R–bimodules.

3. Categorification of the virtual braid groups

Our aim is to extend Rouquier’s categorification to the virtual braid
groups VBn. The cochain complexes associated to the generators σi of VBn
coming from Bn will be the same as Rouquier’s complexes above. We have
to assign complexes to the generators ζi of VBn corresponding to virtual
crossings such that all these complexes satisfy the same relations as the
generators of VBn up to homotopy equivalence.
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3.1. Twisted bimodules. In order to achieve this categorification, we con-
sider the R-bimodule Rω for each permutation ω ∈ Sn. As a left R-module,
Rω is equal to R while the right action of a ∈ R is the multiplication by ω(a).
Note that Rid = R as an R-bimodule. The following lemma is obvious.

Lemma 3.1. For all ω, ω′ ∈ Sn the map ψ : Rω ⊗R Rω′ → Rωω′ defined for

all a, b ∈ R by ψ(a⊗ b) = aω(b) is an isomorphism of R-bimodules.

The bimodules we will mostly use are the bimodules Ri = Rτi . The reason
why we consider these bimodules is that, by Lemma 3.1, they possess the
following interesting property:

Ri ⊗R Ri ∼= R

for all i = 1, . . . , n− 1.

Lemma 3.2. For all permutations ω, ω′ ∈ Sn the R-bimodules Rω ⊗R Bω′

and Bωω′ω−1 ⊗R Rω are isomorphic.

Proof. First note that there are natural isomorphisms of R-bimodules:

Rω ⊗R Bω′
∼= Rω ⊗Rω′ R and Bωω′ω−1 ⊗R Rω ∼= R⊗

Rωω′ω−1 Rω.

Now consider the map ψ : Rω ⊗Rω′ R → R ⊗
Rωω′ω−1 Rω defined for all

a, b ∈ R by

ψ(a⊗ b) = a⊗ ω(b).

This map is well defined: for any c ∈ Rω
′

, we just have to check that a⊗ cb

and aω(c) ⊗ b have the same image under ψ. This is true because c ∈ Rω
′

implies that ω(c) ∈ Rωω
′ω−1

. Moreover the map ψ is obviously a morphism
of R-bimodules.

Similarly, the map ϕ : R⊗
Rωω′ω−1 Rω → Rω⊗Rω′ R defined for all a, b ∈ R

by

ϕ(a⊗ b) = a⊗ ω−1(b)

is a well defined morphism of R-bimodules as well.
Finally, ψ and ϕ are easily seen to be inverse of each other. �

Now let us assign a complex of graded R-bimodules to each generator of
the virtual braid group. To the elements σi and σ−1

i we assign the complexes

F (σi) and F (σ−1
i ) defined by (8) and (9). To the element ζi we assign the

complex concentrated in degree 0:

F (ζi) : 0 −→ Ri −→ 0. (11)

Just as in Section 2.2 we assign to the unit element 1 of VBn the complex
F (1) of (10), and to a virtual braid word we assign the tensor product over
R of the complexes associated to the generators involved in the expression
of the word.

Remark 3.3. Consider ω = ζi1 . . . ζik a word in {ζ1, . . . , ζn−1} and let ω̃ =
τi1 . . . τik be the corresponding element of Sn. It follows from Lemma 3.1
that the complex F (ω) is isomorphic to 0 −→ Rω̃ −→ 0.
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3.2. Categorification of VBn. We now state our main result.

Theorem 3.4. If ω and ω′ are words representing the same element of VBn,
then F (ω) and F (ω′) are homotopy equivalent complexes of R–bimodules.

Proof. By definition of VBn and in view of Theorem 2.1, it is enough to check
that there are homotopy equivalences between the complexes associated to
the braid words appearing in both sides of Relations (3)-(7). Actually we
will prove a stronger result: these complexes are isomorphic.

Permutation group relations. Let ω = ω′ be a permutation group relation.
Since the bimodules Rω̃ and R

ω̃′ are equal, the complexes F (ω) and F (ω′)
are isomorphic in view of Remark 3.3.

Mixed relations. Let us first deal with Relation (6). We have to prove that
for |i− j| > 1 the complexes F (ζjσi) and F (σiζj) are isomorphic. We have

F (ζjσi) : 0 −→ Rj ⊗R R{2}
id⊗ rbi−−−−→ Rj ⊗R Bi −→ 0

and

F (σiζj) : 0 −→ R⊗R Rj{2}
rbi ⊗ id
−−−−→ Bi ⊗R Rj −→ 0.

First observe that F (ζjσi) is naturally isomorphic to the following complex
of bimodules

0 −→ Rj{2}
d

−−→ Rj ⊗Rτi R −→ 0

whose differential d sends each a ∈ Rj{2} to

a
(

τj(xi− xi+1)⊗ 1 + 1⊗ (xi− xi+1)
)

= a
(

(xi− xi+1)⊗ 1 + 1⊗ (xi− xi+1)
)

.

Similarly, F (σiζj) is isomorphic to

0 −→ Rj{2}
d′

−−−→ R⊗Rτi Rj −→ 0

whose differential d′ sends each a ∈ Rj{2} to

a
(

(xi − xi+1) ⊗ 1 + 1 ⊗ (xi − xi+1)
)

.

Since the transpositions τi and τj commute, the proof of Lemma 3.2 provides
us the isomorphism of R-bimodules ψ : Rj ⊗Rτi R → R ⊗Rτi Rj . Using the
invariance of (xi − xi+1) under the action of τj , we easily check that the
following vertical maps and their inverse commute with the differentials.

0 // Rj{2}
d

//

id
��

Rj ⊗Rτi R

ψ

��

// 0

0 // Rj{2}
d′

// R⊗Rτi Rj // 0

Thus the complexes F (ζjσi) and F (σiζj) are isomorphic for all |i− j| > 1.

We finally deal with Relation (7). We have to show that the complexes
F (ζi+1ζiσi+1) and F (σiζi+1ζi) are isomorphic for i = 1, . . . , n − 2. The
complex F (ζi+1ζiσi+1) is equal to

0 −→ Ri+1 ⊗R Ri ⊗R R{2}
id⊗ id⊗ rbi+1

−−−−−−−−−→ Ri+1 ⊗R Ri ⊗R Bi+1 −→ 0
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and the complex F (σiζi+1ζi) is equal to

0 −→ R⊗R Ri+1 ⊗R Ri{2}
rbi ⊗ id⊗ id
−−−−−−−→ Bi ⊗R Ri+1 ⊗R Ri −→ 0.

There exist a natural isomorphism between F (ζi+1ζiσi+1) and the com-
plex

0 −→ Rτi+1τi{2}
d

−−→ Rτi+1τi ⊗R
τi+1 R −→ 0

whose differential d sends each a ∈ Rτi+1τi{2} to

a
(

τi+1τi(xi+1 − xi+2) ⊗ 1 + 1 ⊗ (xi+1 − xi+2)
)

=

a
(

(xi − xi+1) ⊗ 1 + 1 ⊗ (xi+1 − xi+2)
)

.

Similarly, F (σiζi+1ζi) is isomorphic to

0 −→ Rτi+1τi{2}
d′

−−−→ R⊗Rτi Rτi+1τi −→ 0

whose differential d′ sends each a ∈ Rτi+1τi{2} to

a
(

(xi − xi+1) ⊗ 1 + 1 ⊗ (xi − xi+1)
)

.

Applying Lemma 3.2 and using the relation τiτi+1τi = τi+1τiτi+1 and the
involutivity of τi+1 yields the isomorphism

ψ : Rτi+1τi ⊗R
τi+1 R→ R⊗Rτi Rτi+1τi

given for all a ∈ Rτi+1τi , b ∈ R by

ψ(a⊗ b) = a⊗ τi+1τi(b).

Let us complete the proof by checking that the following vertical maps com-
mute with the differentials (and similarly for their inverse).

0 // Rτi+1τi{2}
d

//

id
��

Rτi+1τi ⊗R
τi+1 R

ψ

��

// 0

0 // Rτi+1τi{2}
d′

// R⊗Rτi Rτi+1τi
// 0

For any element a in Rτi+1τi{2} we compute both its image under d′ ◦ id and
ψ ◦ d. We obtain

d′ ◦ id(a) = a
(

(xi − xi+1) ⊗ 1 + 1 ⊗ (xi − xi+1)
)

and
ψ ◦ d(a) = ψ

(

a(xi − xi+1) ⊗ 1 + a⊗ (xi+1 − xi+2)
)

= a(xi − xi+1) ⊗ 1 + a⊗ τi+1τi(xi+1 − xi+2)
= a

(

(xi − xi+1) ⊗ 1 + 1 ⊗ (xi − xi+1)
)

This shows that the complexes F (ζi+1ζiσi+1) and F (σiζi+1ζi) are isomorphic
for all i = 1, . . . , n− 2. �

Remarks 3.5.

• Let us call virtualisation moves the moves consisting in squeezing a classi-
cal crossing between two virtual crossings, as shown in Figure 7. We observe
that the complexes F (ζiσ

ε
i ζi) and F (σεi ) are isomorphic for all i = 1, . . . , n−1

and ε ∈ {−1, 1}. This is essentially due to the involutivity of τi, which im-
plies (cf. Lemma 3.1 and Lemma 3.2) that the bimodules Ri ⊗R Bi ⊗R Ri
and Bi are isomomorphic. Thus our categorification of VBn does not detect
the virtualisation moves.
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Figure 7. Virtualisation moves

• Adding the relation ζiσi+1σi = σi+1σiζi+1 to the presentation of VBn, one
obtains a presentation of the group of welded braids with n strands defined
in [1]. Noting that the only morphism between Rω and Rω′ is the trivial one
if ω 6= ω′, one can check that the complexes F (ζiσi+1σi)

Ri ⊗R Bi+1{2}
id⊗ id⊗ rbi

**VVVVVVVVVVVVVVVVVV

Ri ⊗R R{4}

id⊗ rbi+1

44jjjjjjjjjjjjjjjj

− id⊗ rbi
**TTTTTTTTTTTTTTTT

Ri ⊗R Bi+1 ⊗R Bi

Ri ⊗R Bi{2}

id⊗ rbi+1 ⊗ id

44iiiiiiiiiiiiiiiiii

and F (σi+1σiρi+1)

Bi+1 ⊗R Ri+1{2}
id⊗ rbi ⊗ id

++VVVVVVVVVVVVVVVVVVV

R⊗R Ri+1{4}

rbi+1 ⊗ id
44iiiiiiiiiiiiiiiii

− rbi ⊗ id
**UUUUUUUUUUUUUUUUU

Bi+1 ⊗R Bi ⊗R Ri+1

Bi ⊗R Ri+1{2}

rbi+1 ⊗ id⊗ id

33hhhhhhhhhhhhhhhhhhh

are not equivalent up to homotopy.
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